Problems

1. The **point charge** below is in the plane of the page. At the origin O, the electric field has y-component $E_y = -1.2 \times 10^3 \text{ N/C}$. Find E_x at the origin. (2 points)

2. Find the power dissipated in the resistor of resistance R below. (3 points) $8.0 \text{ V} - (3.0 \text{ A})(3.0 \Omega) + 6.0 \text{ V} - (5.0 \text{ A})R = 0$ $R = 1.0 \Omega$ $P = I^2 R = 25 \text{ W}$ 3.0 A 3.0Ω 3.0Ω 3.0Ω **3.** In the circuit diagram below, $C_1 = 10.0 \,\mu\text{F}$, $C_2 = 3.00 \,\mu\text{F}$ and $C_3 = 6.00 \,\mu\text{F}$. Find the energy stored in the capacitor of capacitance C_2 when the current $I = 2.00 \,\text{mA}$. (The capacitors were uncharged before they were connected to the 12.0 V-emf.) (4 points)

4. The *cylinder* of *resistivity* $\rho = 1.72 \times 10^{-8} \,\Omega \cdot \mathrm{m}$ shown in cross-section below (inner radius $a = 2.00 \,\mathrm{mm}$, outer radius $b = 4.00 \,\mathrm{mm}$) has length $L = 25.0 \,\mathrm{cm}$ and carries an *outward* current, uniformly distributed over the cylinder's cross section; the voltage across the length of the cylinder is $12.0 \,\mathrm{mV}$. Find $\oint_C \vec{B} \cdot d\vec{l}$ for the *clockwise* circular path *C* of radius $r = 3.00 \,\mathrm{mm}$.

$$J = \frac{1}{\rho} \frac{\Delta V}{L} = 2.79 \times 10^{6} \,\text{A/m}^{2}$$
$$|I_{\text{encl}}| = J\pi (r^{2} - a^{2})$$
$$\left|\oint_{C} \vec{B} \cdot d\vec{l}\right| = +\mu_{0} \left|I_{\text{encl}}\right| = 5.51 \times 10^{-5} \,\text{T} \cdot\text{m}$$
$$\oint_{C} \vec{B} \cdot d\vec{l} = -5.51 \times 10^{-5} \,\text{T} \cdot\text{m}$$

5. The conducting loop below (radius r = 1.5 cm, resistance $R = 80 \text{ m}\Omega$) is in the uniform magnetic field \vec{B}_s of a solenoid with 250 turns per unit length; \vec{B}_s is perpendicular to the plane of the loop. The current in the solenoid $I_s = (5.0 \text{ A})e^{-t/\tau}$, where $\tau = 15 \text{ s}$. Find the magnitude and direction of the current in the **loop** when $I_s = 3.0 \text{ A}$. (4 points)

$$|\Phi_{B_{\rm s}}| = \mu_0 n I_{\rm s} \pi r^2$$
$$|\mathcal{E}| = \left| \frac{d\Phi_{B_{\rm s}}}{dt} \right| = \mu_0 n \pi r^2 \left| \frac{dI_{\rm s}}{dt} \right| = \mu_0 n \pi r^2 \frac{I_{\rm s}}{\tau}$$
$$I_{\rm Loop} = \frac{|\mathcal{E}|}{R} = 5.6 \times 10^{-7} \,\mathrm{A}$$

 $\frac{d\Phi_{B_{\rm s}}}{dt} < 0 \implies I_{\rm Loop} \text{ counter-clockwise}$

6. Three infinitely long *straight* parallel wires are shown in the figure below; the currents are $I_1 = 4.5 \text{ A}, I_2 = 3.0 \text{ A}$ and $I_3 = 5.0 \text{ A}$. The *net* force *per unit length* on the wire carrying current I_2 is $33 \,\mu\text{N/m}$. What is d? (3 points)

- 7. The *spherical shell* of charge drawn (in cross section) below has constant *volume* charge density $\rho > 0$, inner radius *a* and outer radius *b*. Let *r* be the distance from *O*.
 - a) Show that the electric field has magnitude

$$E = \frac{\rho r}{3\epsilon_0} \left(1 - \frac{a^3}{r^3} \right)$$

when a < r < b.

- b) What is the maximum value of E?
- c) If the electric potential V is zero at infinity, what is V on the outer surface (r = b) of the shell? (Give your answer in terms of ρ and $\epsilon_{0.}$) (1 point)

a)

$$Q_{\text{encl}} = \rho \frac{4\pi}{3} (r^3 - a^3)$$

$$4\pi r^2 E = \frac{Q_{\text{encl}}}{\epsilon_0} \Longrightarrow E = \frac{\rho r}{3\epsilon_0} \left(1 - \frac{a^3}{r^3}\right)$$
b)

$$\frac{dE}{dr} = \frac{\rho}{3\epsilon_0} \left(1 + 2\frac{a^3}{r^3}\right) > 0$$

$$\Longrightarrow \text{Maximum at r=b:} \quad E_{\text{max}} = \frac{\rho b}{3\epsilon_0} \left(1 - \frac{a^3}{b^3}\right)$$
c)

$$V = \frac{kQ}{b} \text{ with } Q = \rho \frac{4\pi}{3} (b^3 - a^3)$$

$$\Longrightarrow V = \frac{\rho b^2}{3\epsilon_0} \left(1 - \frac{a^3}{b^3}\right)$$

8. An *electron* moves in the fields
$$\vec{E} = (6x^2 + 2)\hat{\imath} + 4y^2\hat{\jmath}$$
 and $\vec{B} = 3y\hat{\imath} + (x^2 + 2)\hat{\jmath}$, where \vec{E} is in N/C, \vec{B} is in tesla and x, y are in meters. Let \vec{F} be the *net* force on the electron.
Find $\vec{F} \cdot \vec{v}$ when the electron moves with velocity $\vec{v} = (2 \times 10^4 \text{ m/s})\hat{i}$ through the point $(x = 1 \text{ m}, y = 0 \text{ m}).$ (2 points)

$$\vec{F} \cdot \vec{v} = q(\vec{E} + \vec{v} \times \vec{B}) \cdot \vec{v} = q\vec{E} \cdot \vec{v} = qE_x v$$
$$E_x v = (6 \cdot 1^2 + 2)(2 \times 10^4) = 1.6 \times 10^5 \,\mathrm{W/C}$$
$$\implies \vec{F} \cdot \vec{v} = -2.6 \times 10^{-14} \,\mathrm{W}$$

Conceptual Questions

- 1. The *spherical metal shell* (of radius *a*) shown has a positive surface charge. The *rate of change of the potential* is greatest at:
 - a) O
 - b) A
 - c) B ✓
 - d) C

- A student claims that, if the voltage across a *parallel-plate* capacitor is *fixed*, then the *energy in the capacitor* is *increased* by: (i) increasing the plate area A; (ii) increasing the plate separation d, and; (iii) inserting a dielectric. The correct claims are:
 - a) (i) and (ii)
 - b) (i) and (iii) \checkmark
 - c) (ii) and (iii)
 - d) (i), (ii) and (iii)
- **3.** An electron moves in the direction *opposite* to an electric field \vec{E} . The potential energy U of the electron and the potential V are such that:
 - a) U increases and V decreases
 - b) U decreases and V decreases
 - c) U increases and V increases
 - d) U decreases and V increases \checkmark
- 4. The *segment* (to the right) of a current-carrying wire is in a uniform magnetic field (out of the page). The *direction* of the magnetic force on the wire segment is:
 - a) ↑
 - b) 🔨
 - c) 🔨 🗸
 - d) ↓

- 5. Wire loops 1 and 2 carry the same current but have different diameters d_1 and d_2 : $d_2 = 2d_1$. If the magnetic field at the center of loop 2 is B, then the magnetic field at the center of loop 1 is:
 - a) $2^{\frac{3}{2}}B$
 - b) 2*B* ✓
 - c) B/2
 - d) $B/2^{\frac{3}{2}}$

6. The four conducting rods below (with *square* cross sections) are all made from the *same material* and carry the *same current I*. In figures (1) and (2), the *square cross section* has sides of length *a*; in figures (3) and (4), the *square cross section* has sides of length 2*a*.

The *potential differences* across the rods are such that:

- a) $V_{(1)} < V_{(2)} < V_{(3)} < V_{(4)}$ b) $V_{(1)} = V_{(3)} < V_{(2)} = V_{(4)}$ c) $V_{(2)} = V_{(4)} < V_{(3)} = V_{(1)}$ d) $V_{(4)} < V_{(3)} < V_{(2)} < V_{(1)} \checkmark$
- 7. The four rectangular wire loops W, X, Y and Z below are *identical* but move with *different* speeds v perpendicular to a uniform magnetic field \vec{B} .

The rate of change of magnetic flux is *biggest* through loop:

a) W
$$\checkmark$$
 b) X c) Y d) Z

8. The *change with time* of the current *I* in the infinite *straight wire* below is plotted in the graph to the right.

The magnitude of the average induced emf in the *circular wire loop* is *smallest* during interval:

a) A b) B \checkmark c) C d) D

End of Examination